Acta Crystallographica Section B

Structural

Science
ISSN 0108-7681

Alla Arakcheeva, ${ }^{\text {a }}$ Gervais Chapuis, ${ }^{\text {a }}$ Vâclav Petricek ${ }^{\text {b }}$ and Vladimir Morozov ${ }^{\text {c }}$

${ }^{\text {a }}$ Ecole Polytechnique Fédérale de Lausanne, Laboratoire de cristallographie, BSP, CH-1015 Lausanne, Switzerland, ${ }^{\mathbf{b}}$ Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Praha 8, Czech Republic, and ${ }^{\text {c }}$ Department of Chemistry, Moscow State University, 119899 Moscow, Russia

Correspondence e-mail:
gervais.chapuis@epfl.ch
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The role of second coordination-sphere interactions in incommensurately modulated structures, using β $\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ as an example

The incommensurate palmierite-like structure of β $\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$, potassium ytterbium tetramolydate, has been refined in the $(3+1)$-dimensional monoclinic superspace group $X 2 / m(0 \rho 0) 00$, with $X=\left[0000 ; \frac{1}{2} \frac{1}{2} 00 ; 00 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}\right]$ and the unit-cell parameters $a=10.4054$ (16), $b=6.1157$ (12), $c=19.7751(18) \AA, \beta=136.625(10)^{\circ} ; \mathbf{q}=0.6354(30) \mathbf{b}^{*}$. The occupations of the K and Yb atomic positions are described by crenel functions. The structure model reveals a balanced interaction between the atoms of the first and second coordination spheres. It is shown that the third coordination sphere should not be neglected in studies of modulated structures. The ordering of the K and Yb atoms appears to be the driving force for the modulation of all the other atoms.

1. Introduction

The origin of the incommensurability in crystals was at the center of many theoretical models, which have been extensively discussed in the literature. In particular, ANNNI, DIFFOUR and other models (see, for example, Selke \& Fischer, 1979; Bak, 1982; Janssen \& Tjon, 1981) are based on competing interactions between nearest-neighbor and next-nearest-neighbor particles. From the theoretical considerations of Parlinski \& Chapuis (1993) it was also shown that the role of atomic interactions not only of the first but also of the second coordination sphere (cation-cation for the anioncontaining compounds) was fundamental for the formation of incommensurably modulated structures. The study of incommensurate structures as a probe to reveal atomic interactions in crystals has already been discussed with the examples of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{3} \operatorname{In}\left(\mathrm{PO}_{4}\right)_{2}$ (Chapuis \& Arakcheeva, 2004; Arakcheeva et al., 2003). In both crystals, the cation-cation interactions were identified as the driving forces and primary parameters of the modulations in the corresponding structures. Another example of cation-cation interactions was described by Dusek et al. (2002) for the monophosphate tungsten bronze $\mathrm{K}_{1.33} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$, where the phase transition mechanism was associated with the release of internal strain between the K atoms and the surrounding PO_{4} groups.

In the present paper we pursue our main goal of identifying the fundamental interactions in incommensurate structures with the investigation of $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$. Three modifications of the complex molybdenum oxide $\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ belonging to the palmierite $\left[\mathrm{K}_{2} \mathrm{~Pb}\left(\mathrm{SO}_{4}\right)\right]$ structure type were recently identified by Morozov et al. (2003):
(i) the high-temperature phase α, space group $R \overline{3} m, a=$ 6.0372 (1) , $c=20.4045$ (2) \AA;

Received 14 April 2005
Accepted 31 May 2005
(ii) the low-temperature phase γ, space group $C 2 / c, a=$ 14.8236 (1), $b=12.1293$ (1), $c=10.5151$ (1) $\AA, \gamma=114.559$ (1) ${ }^{\circ}$;
(iii) an intermediate-temperature phase β, which is incommensurate according to electron diffraction investigations.

The palmierite structure type is well known and the rhombohedral $\alpha-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ modification is as shown in Fig. 1. The structure is built up from two alternating layers along the trigonal \mathbf{c} axis. The first layer consists of MoO_{4} tetrahedra and $M \mathrm{O}_{6}$ octahedra $(M=\mathrm{K}, \mathrm{Yb})$, whereas the second layer consists of KO_{10} polyhedra. In this article, however, we would like to single out another building unit which will play an important role in the description of the incommensurate structure, namely layer L as indicated in Fig. 1. This layer (Fig. 1b) is normal to the trigonal \mathbf{c} axis and consists of MoO_{4} tetrahedra, MO_{6} octahedra and K atoms.

The whole structure thus consists of three identical layers related by the translation vectors of the R lattice. In the same publication (Morozov et al., 2003), the crystal structures of phases α and γ were also refined. According to this study, the M position of the γ modification (Fig. 1) was statistically occupied by $\left(\mathrm{K}_{0.5} \mathrm{Yb}_{0.5}\right)$, whereas ordering of K and Yb atoms was observed in the γ phase. A model based on a combination of α - and γ-structural entities was proposed for the incommensurate modification β.

The purpose of the present publication is the determination and refinement of the incommensurately modulated β phase. In addition, we analysed the atomic interactions resulting from the first (cation-oxygen) and second (cation-cation) coordination spheres in an attempt to reveal the complementary character of the two types of interactions.

Figure 1
The palmierite structure type, space group $R \overline{3} m$. (a) Two projections of the structure. L layers are indicated. (b) A single L layer consisting of $\left[\mathrm{MoO}_{4}\right]$ and $\left[M \mathrm{O}_{6}\right]$ polyhedra, and K atoms which are located on both sides of the $\left[M \mathrm{O}_{6}\right]$ octahedra along c.

2. Experimental study of the incommensurate β $\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ structure

2.1. Preparation

Details of the preparation of $\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ by a conventional ceramic technique, as well as the conditions for the α, β and γ transformations and phase identification by electron- and X-ray powder diffraction techniques have previously been described by Morozov et al. (2003). The low-temperature modification γ was obtained at $893 \pm 10 \mathrm{~K}$. Annealing of this phase at $960 \pm$ 10 K (close to the melting point) for 3 h followed by quick quenching by liquid nitrogen freezes the high-temperature α modification. Slow cooling from 960 K to room temperature induces the formation of the β modification.

Single crystals of β $\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ were grown by spontaneous crystallization of the melt. The temperature was automatically controlled with an accuracy of $\pm 0.5 \mathrm{~K}$. The cooling rate from 973 to 673 K was 3$5 \mathrm{~K} \mathrm{~h}^{-1}$, which was followed by cooling to room temperature in the cooling furnace regime.

2.2. X-ray experiment and results of structure refinement

The experimental details are summarized in Table 1. All

models of the cations in the average structure were calculated from the rhombohedral α phase (Morozov et al., 2003). This starting model can be represented by L layers of edge-sharing cubic clusters with the composition [$\left.M \mathrm{Mo}_{6} \mathrm{~K}_{2}\right] \quad$ (Fig. 2), which completely characterizes the palmierite (cationic) structure. The translation vector \mathbf{c}_{α} is related to the body diagonals of the cubes located at the centre of the R lattice, while \mathbf{a}_{α} is oriented along the face diagonal of the cube. The starting model was refined for the average structure in the monoclinic unit cell by using only the main reflections. The O atoms could not be unambigously localized in the refined structure. By including first- and second-order satellites, it was possible to distinguish between the Yb and K1 atoms occupying the M position and their occupation could be reasonably described by two complementary crenel functions. The O atoms were located from a difference Fourier synthesis in the vicinity of Mo. The $\left[\mathrm{MoO}_{4}\right]$ group was further refined as a rigid unit. The K-atom position of the α phase (Figs. 1 and 2) corresponds to K2 in the present structure. The position of K 2 and the rigid-body groups $\left(\mathrm{MoO}_{4}\right)$ exhibit a clear discontinuity and their positional modulations can be divided into two mutually related t regions, which are best represented by crenel functions. The final coor-
reflections within the sphere limited by $\theta=34.66^{\circ}$ including satellites up to third order were measured. The refinement of the unit-cell parameters, including the modulation vector \mathbf{q}, was performed using the CrysAlis software (Oxford Diffraction Ltd, 2001) and the program NADA (Schönleber et al., 2001) in the conventional monoclinic setting and with $\mathbf{q}=\left[0 \mathbf{a}^{*}\right.$ $\left.+\beta \mathbf{b}^{*}+0 \mathbf{c}^{*}\right]$. The unit-cell parameters of the α, β and γ modifications are related by the following expressions: $\mathbf{a}_{\beta}=-\mathbf{c}_{\gamma}=\left(2 \mathbf{a}_{\alpha}+\mathbf{b}_{\alpha}\right) ; \quad \mathbf{b}_{\beta}=0.5 \mathbf{b}_{\gamma}=\mathbf{b}_{\alpha} ;$ $\mathbf{c}_{\beta}=\left(\mathbf{a}_{\gamma}+2 \mathbf{c}_{\gamma}\right)=-4 / 3\left(2 \mathbf{a}_{\alpha}+\mathbf{b}_{\alpha}\right)+2 / 3 \mathbf{c}_{\alpha}$. The non-primitive centring X in the $(3+1)$-dimensional superspace (Table 1) corresponds to the three-dimensional average unit cell with $\mathbf{c}_{\mathrm{av}}=0.5 \mathbf{c}_{\beta}$ and the space group $C 2 / m$.

The JANA2000 system of programs (Petricek et al., 2000) was used for structure refinement and analysis. The starting
dinates, parameters of the relevant crenel functions and equivalent isotropic displacement parameters have been deposited. ${ }^{1}$ Two positions of the $\left[\mathrm{MoO}_{4}\right]$ rigid unit [(a) and (b) in the tables] are tilted and shifted, and the corresponding parameters are listed in Table 2.

A selection of relevant interatomic distances and angles are presented in Table 3 (a complete list of distances is available in the supplementary materials). The interatomic distances in the

[^0]Table 1
Experimental data.

Crystal data	
Chemical formula	$\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$
M_{r}	1008.3
System, superspace group	Monoclinic, $X 2 / m(0 \beta 0) 00$
Non-primitive translations	[$\left.\frac{1}{2} \frac{1}{2} 00 ; 00 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}\right]$
a, b, c (\AA)	10.4054 (16), 6.1157 (12), 19.7751 (18)
β (${ }^{\circ}$)	136.625 (10)
$V\left(\mathrm{~A}^{3}\right)$	864.2 (3)
Z	2
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	3.873 (1)
Modulation vector	$\mathbf{q}=0.6354$ (30) \mathbf{b}^{*}
Radiation type	Mo $K \alpha$
No. of reflections for cell parameters	5412
θ range (${ }^{\circ}$)	5.3-37.7
$\mu\left(\mathrm{mm}^{-1}\right)$	9.46
Temperature (K)	293
Crystal form, colour	Isomorphic, colourless
Crystal size (mm)	$0.14 \times 0.13 \times 0.12$
Data collection	
Diffractometer	KM4
Data collection method CCD detector	KM4CCD/Sapphire
Absorption correction	Analytical
$T_{\text {min }}$	0.159
$T_{\text {max }}$	0.200
No. of measured, independent and observed reflections	67 857, 6142, 3412
Criterion for observed reflections	$I>3 \sigma(I)$
$R_{\text {int }}$	0.12
$\theta_{\text {max }}\left({ }^{\circ}\right)$	69.3
Range of h, k, l	$-12 \Rightarrow h \Rightarrow 12$
	$-10 \Rightarrow k \Rightarrow 10$
	$-35 \Rightarrow l \Rightarrow 35$
Refinement	
Refinement on	F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.077, 0.085, 2.89
No. of reflections	3412
No. of parameters	94
Weighting scheme	$w=1 /\left[\sigma^{2}(F)+0.0001 F^{2}\right]$
$(\Delta / \sigma)_{\max }$	0.001
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \mathrm{A}^{-3}\right)$	$5.24,-5.20$
Extinction method	B-C type 1 Lorentzian isotropic (Becker \& Coppens, 1974)
Extinction coefficient	0.021 (6)

Computer programs used: CrysAlis (Oxford Diffraction Ltd, 2001).
first and second coordination spheres of Yb and K 1 are represented as a function of the internal coordinate t in Fig. 3.

The length of the Yb crenel function [0.512 (2)] is slightly larger than the length of the K1 crenel function [0.488 (2)], while the stoichiometry of the compound, as confirmed by chemical analyses (Morozov et al., 2003), requires equal amounts of Yb and K 1 atoms. In order to explain this asymmetry, we tested both a model with a modulation of the Yb occupation and a model with an additional crenel function for a mixed $\left(\mathrm{K}_{0.5} \mathrm{Yb}_{0.5}\right)$ composition. Both models led to unrealistic ADP parameters for the Yb and $\left(\mathrm{K}_{0.5} \mathrm{Yb}_{0.5}\right)$ positions. Indeed, no essential modulations of the ADP parameters (see supplemental materials) were observed for the Yb position in our final model. Therefore, it is likely that over a short range along $t\left(\Delta t_{\mathrm{Yb}}=0.0248\right)$ the modulation corresponds to a mixed

Table 2
Basic rotation and translation displacements for two (a and b) positions of the $\left[\mathrm{MoO}_{4}\right]$ rigid unit in $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$.

	Rotation components $\left({ }^{\circ}\right)$					Translation components		
Position	r_{x}	r_{y}	r_{z}		t_{x}	t_{y}	t_{z}	
(a)	0	0	0		$-0.00030(11)$	0	$-0.00013(6)$	
(b)	0	$35.8(5)$	180		$-0.0608(5)$	0	$-0.0275(3)$	

Table 3
Selected cation-oxygen distances (\AA) and angles $\left({ }^{\circ}\right)$ in the $\left[\mathrm{MoO}_{4}\right]$ tetrahedra in $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$.

	Average	Minimal	Maximal
$\mathrm{Yb}-\mathrm{O} 1 a$	2.293 (14)	2.168 (14)	2.686 (14)
$\mathrm{Yb}-\mathrm{O} 2 a$	2.31 (3)	2.21 (3)	2.45 (3)
$\mathrm{Yb}-\mathrm{O} 2 \mathrm{~b}$	2.26 (19)	2.2 (3)	2.36 (13)
K1-O1a	2.990 (17)	2.461 (18)	3.13 (2)
K1-O2a	2.84 (4)	2.55 (3)	3.10 (7)
K1-O1b	2.67 (3)	2.48 (3)	2.96 (3)
K1-O3a	2.97 (3)	2.90 (3)	3.17 (3)
K1-O3a	3.45 (4)	2.80 (8)	3.88 (4)
$\mathrm{K} 2 a-\mathrm{O} 1 a$	2.89 (3)	2.53 (3)	3.19 (2)
K2a-O1a	3.27 (4)	2.92 (4)	3.61 (4)
K2a-O1a	3.15 (3)	2.83 (3)	3.41 (3)
K2a-O2a	2.839 (15)	2.539 (18)	3.136 (15)
$\mathrm{K} 2 a-\mathrm{O} 2 a$	3.294 (15)	2.843 (18)	3.682 (17)
K2a-O3a	2.60 (3)	2.49 (4)	2.75 (3)
$\mathrm{K} 2 a-\mathrm{O} 1 b$	3.30 (6)	2.61 (5)	3.98 (5)
$\mathrm{K} 2 a-\mathrm{O} 1 b$	2.86 (6)	2.53 (6)	3.27 (4)
$\mathrm{K} 2 a-\mathrm{O} 3 b$	2.61 (18)	2.6 (3)	2.64 (13)
$\mathrm{K} 2 a-\mathrm{O} 3 b$	3.32 (4)	2.63 (4)	3.97 (3)
$\mathrm{K} 2 b-\mathrm{O} 1 a$	2.91 (7)	2.84 (9)	3.09 (6)
$\mathrm{K} 2 b-\mathrm{O} 1 a$	3.13 (8)	3.05 (5)	3.36 (6)
$\mathrm{K} 2 b-\mathrm{O} 2 a$	2.78 (6)	2.76 (9)	2.82 (4)
$\mathrm{K} 2 b-\mathrm{O} 2 a$	2.88 (2)	2.81 (2)	2.924 (18)
$\mathrm{K} 2 b-\mathrm{O} 1 b$	3.29 (13)	2.64 (9)	3.54 (10)
$\mathrm{K} 2 b-\mathrm{O} 2 b$	2.96 (8)	2.82 (6)	3.04 (12)
Moa tetrahedron			
$\mathrm{Mo}-\mathrm{O} 1 \times 2$	1.78 (2)	1.73 (3)	1.83 (3)
$\mathrm{Mo}-\mathrm{O} 2$	1.77 (3)	1.74 (3)	1.87 (4)
Mo-O3	1.72 (2)	1.684 (19)	1.77 (7)
$\mathrm{O} 1-\mathrm{Mo}-\mathrm{O} 2$	110.4 (12)	108.2 (14)	113.3 (13)
$\mathrm{O} 1-\mathrm{Moa}-\mathrm{O} 3$	108.2 (11)	107.8 (10)	109.2 (11)
$\mathrm{O} 1-\mathrm{Mo}-\mathrm{O} 1$	111.8 (18)	107.0 (17)	113.3 (17)
$\mathrm{O} 2-\mathrm{Mo}-\mathrm{O} 3$	107.5 (11)	106 (2)	107.9 (10)
Mob tetrahedron			
$\mathrm{Mo}-\mathrm{O} 1 \times 2$	1.77 (6)	1.72 (9)	1.85 (3)
$\mathrm{Mo}-\mathrm{O} 2$	1.72 (16)	1.72 (13)	1.72 (11)
Mo-O3	1.68 (11)	1.63 (16)	1.76 (8)
$\mathrm{O} 1-\mathrm{Mob}-\mathrm{O} 2$	111 (4)	109 (4)	111 (5)
$\mathrm{O} 1-\mathrm{Mob}-\mathrm{O} 3$	109 (5)	108 (6)	110 (5)
$\mathrm{O} 1-\mathrm{Mob}-\mathrm{O} 1$	112 (8)	111 (9)	113 (6)
$\mathrm{O} 2-\mathrm{Mob}-\mathrm{O} 3$	106 (8)	105 (6)	106 (10)

position $M=\left(\mathrm{K}_{0.5} \mathrm{Yb}_{0.5}\right)$. The $\mathrm{Yb}-\mathrm{O}$ distances corresponding to the mixed t range $\left(\Delta t_{\mathrm{Yb}}=0.25 \pm 0.0062\right.$ and 0.75 ± 0.0062, Fig. 3) have unusually larger values, $2.4-2.68 \AA$, in comparison to the remaining part of the $\mathrm{Yb} t$ range, where the distances vary between 2.17 and $2.6 \AA$. Both Δt_{Yb} ranges are associated with the $\left(\mathrm{K}_{0.5} \mathrm{Yb}_{0.5}\right)$ mixed composition (Fig. 3). In other words, approximately 2.5% of the M position have a mixed composition $\left(\mathrm{K}_{0.5}, \mathrm{Yb}_{0.5}\right)$. Both Yb and $\left(\mathrm{K}_{0.5} \mathrm{Yb}_{0.5}\right)$ positions are characterized by the coordination number $\mathrm{CN}=6$.

2.3. Description of the incommensurate $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ structure

Fragments of the incommensurately modulated β $\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ structure related to the trigonal palmierite structure type (Fig. 1 and 2) are shown in Figs. 4 and 5.

Similar to the trigonal α phase (Fig. 1a), the β phase can be described as a series of L layers stacked along the \mathbf{c} axis (Fig. 4). All L layers in the β phase also have identical compositions and topologies (Fig. 5). However, $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ exhibits some characteristic features, which are related to two possible occupations of the M position (K 1 or Yb). The distribution of

Figure 3
Interatomic distances in the second (upper part) and first coordination spheres (lower part) for the M atoms as a function of the internal coordinate t. In the upper part, only the $M-\mathrm{K} 2$ curves are indicated, with the remaining curves corresponding to $M-$ Mo distances. The average distances are represented by dotted lines. Owing to the symmetry of the M position, every curve indicates two symmetrically equivalent distances. The t ranges related to $M=\mathrm{K} 1$ and $M=\mathrm{Yb}$ are separated by solid vertical lines. The two t ranges located between the solid and dashed lines are associated with the mixed $M=\left[\mathrm{K}_{0.5} \mathrm{Yb}_{0.5}\right]$ composition. The vertical dotted lines separating the t ranges relate to different crenel functions. The corresponding shapes of the $\left[M \mathrm{O}_{n}\right]$ and $\left[M \mathrm{Mo}_{6} \mathrm{~K}_{2}\right]$ polyhedra are also indicated.

Yb and K 1 in the structure is periodic along the superspace direction \mathbf{A}_{2}, but aperiodic along the \mathbf{b} direction. Note that the two vectors are related by the expression $\mathbf{A}_{2}=\mathbf{b}-(\mathbf{q} \cdot \mathbf{b}) \mathbf{A}_{4}$ with $\left\|\mathbf{A}_{4}\right\|=1$ (Fig. 6). Thus, the $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ structure can be described by an aperiodic (but not arbitrarily) distribution of M clusters along the \mathbf{b} axis (Fig. 5).

3. Discussion

3.1. Complex cation-anion and cation-cation interactions

The basis of our analysis of the atomic interactions is the variation of interatomic distances along the internal coordinate t. If an independent variation is observed (i.e. not related by any symmetry operation), the strength of the interaction is inversely related to the magnitude of the variation.

The Mo-O distances and angles are the most stable entities in this structure (Table 3). As expected, the occupancy of the M position is correlated to the difference between the $\mathrm{Yb}-\mathrm{O}$ and $\mathrm{K} 1-\mathrm{O}$ distances (Fig. 3). In spite of a stable coordination number, $\mathrm{CN}=$ 6 , the $\mathrm{Yb}-\mathrm{O}$ distances exhibit some large fluctuations with a maximal value of $\Delta d_{\text {max }}=0.5 \AA$ for a single $\mathrm{Yb}-\mathrm{O}$ distance. The CN of K 1 is 8,10 or 12 depending on the value of the internal coordinate t. The K1-O distances vary between 2.46 and $3.88 \AA$ with $\Delta d_{\text {max }}=$ $1.08 \AA$. For $\mathrm{CN}=10$, the $\mathrm{K} 2-\mathrm{O}$ distances vary more (from 2.49 to $3.98 \AA$ with $\left.\Delta d_{\text {max }}=1.37 \AA\right)$ than the $\mathrm{K} 1-\mathrm{O}$ distances. The variability of the distances related to the first coordination sphere of Yb and K atoms points to an additional type of interaction. This is related to the cation-cation interactions in the second coordination sphere. A comparison of the $M-\mathrm{O}$ and M_{-} cation distances (Fig. 3) reveals that a larger number of shorter $M-\mathrm{O}$ distances are correlated to an increase in longer M-cation distances.

As seen in Figs. 3-5, the ordering of K 1 and Yb in the M position induces a rotation and displacement of the MoO_{4} tetrahedra in order to form YbO_{6} octahedra. However, the Mo atoms at the centres of these units are stable,

Figure 4
A fragment of the $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ structure projection along the a axis. The YbO_{6} octahedra (dark grey) and MoO_{4} tetrahedra (light grey) are indicated along with the circles for the K atoms. The distribution of K and Yb is aperiodic along the b axis.
thus keeping the $\left[M \mathrm{Mo}_{6} \mathrm{~K}_{22}\right.$] cubic cluster unchanged. Since the $\mathrm{Yb}-$ Mo distances remain in the range 3.66-3.80 \AA, the increase of the $\mathrm{Yb}-\mathrm{O}$ distances in the octahedra is mainly
balanced by a shortening of the $\mathrm{Yb}-\mathrm{K} 2 a$ distances from 3.92 to $3.82 \AA$ in the Yb clusters (Fig. 3). Beside the MoO_{4} tetrahedra, the Yb cluster has the least variable interactions ($\Delta d_{\text {max }}$ $=0.15 \AA$).

The K1 clusters are less stable than the Yb cluster owing to the various coordination numbers in the first coordination sphere (Fig. 3). The shortest average K1-Mo distances in the second coordination sphere are correlated with the longest average $\mathrm{K} 1-\mathrm{O}$ distance in the first coordination sphere. The highest coordination number $(\mathrm{CN}=12)$ of the $\mathrm{K} 1-\mathrm{O}$ interactions induces a transformation of the cubic K1 cluster into a [$\mathrm{K}_{1} \mathrm{Mo}_{6}$] octahedron as a consequence of the elongation of two K2b vertices (K1 K K $2 b>4.38$ Å, Figs. 3 and 5). The balance between the K1-O and K1-K2 interactions can be directly associated with the close correlation between the K2 and MoO_{4} crenel functions: in the lower part of Fig. 3 we observe that each $\mathrm{K} 1-\mathrm{O}$ coordination number is associated with a specific configuration of tilts and shifts of the MoO_{4} tetrahedra; we also observe that the $\mathrm{K} 1-\mathrm{K} 2$ interactions vary for each coordination number. It is important to note that the third coordination sphere of K1 uniquely determines the CN in the first coordination sphere (Fig. 5): six Yb clusters surround a K 1 [$\mathrm{CN}=12$] cluster; four Yb clusters and two K 1 clusters surround a $\mathrm{K} 1[\mathrm{CN}=$ 10] cluster; three Yb clusters and three K1 clusters surround a K1 $[\mathrm{CN}=8]$ cluster.

The behaviour of the K2a atom can be better expressed by its contribution to the stabilization of the M cluster ($3.83<\mathrm{K} 2 a-M<$ $4.02 \AA$ with $\Delta d_{\max }=0.1 \AA$, Fig. 3) than by its role as the centre of the $\mathrm{K} 2 a \mathrm{O}_{10}$ polyhedron $(2.49<\mathrm{K} 2 a-$ $\mathrm{O}<3.7 \AA$ ith $\Delta d_{\max }=0.9 \AA$). This contrasts with the K2b atom, which is not associated with an M cluster and which consequently exhibits a smaller variation of the $\mathrm{K} 2 b \mathrm{O}_{10}$ polyhedron $(2.75<\mathrm{K} 2 b-\mathrm{O}<$ $3.55 \AA$ and $\Delta d_{\text {max }}=0.3 \AA$). Three additional and relatively short $\mathrm{K} 2-\mathrm{K} 2$ distances (3.42-3.92 A, and $\Delta d_{\text {max }}=0.3 \AA$) between nonshared vertices of the $\left[M \mathrm{Mo}_{6} \mathrm{~K}_{22}\right]$ cubic cluster should also be mentioned. These paired interactions contribute to the linking of two neighbouring L layers (Figs. 1 and 2). Here also the largest K2bK 2 distance, $3.8 \AA$, is smaller by $0.12 \AA$ compared with the largest $\mathrm{K} 2 a-\mathrm{K} 2$ distance, $3.92 \AA$, which is
a consequence of the fact that $\mathrm{K} 2 b$ does not contribute to the formation of M clusters.

From the present analysis we can draw the following conclusions:
(i) Besides the MoO_{4} tetrahedra, the cubic M clusters, [$M_{M o_{6}} \mathrm{~K}_{22}$], are the most stable building units in the incommensurately modulated structure $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ of the palmierite family. This observation justifies the interpretation of this structure in terms of building units of M clusters (Fig. 2).
(ii) The atomic interactions of the first (cation O atoms) and second (M cluster) coordination sphere are correlated.
(iii) The shape of the first coordination sphere of $M=\mathrm{K} 1$ atoms is uniquely determined by the third coordination sphere, i.e. it is directly related to the nature of the surrounding M clusters (Fig. $5 b$). In order words, the distribution of K 1 and Yb atoms among the M clusters drives the tilts and shifts of the MoO_{4} tetrahedra.

3.2. Driving forces of the modulation

The incommensurately modulated structure is associated with the distribution of K and Yb in the M position along the b axis. Therefore, the primary modulation parameter is the occupation of the M position, which is best described by complementary crenel functions for the K and Yb atoms. The distribution of the K 1 and Yb clusters in the L layer determines the third coordination sphere of every K 1 and Yb atom. The third coordination sphere of every K 1 and Yb atom in

Figure 6
Occupational modulation of the M position in the incommensurate structure $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$, section $x_{2} x_{4}\left[x_{3}=0 ; x_{1}=0\right.$ and $\left.\frac{1}{2}\right]$. Along \mathbf{b}, the aperiodic sequence of K 1 and Yb defines their distribution in the L layer (see the text, and Figs. 4 and 5): solid lines refer to $x_{1}=0$, whereas dashed lines refer to $x_{1}=\frac{1}{2}$. The terms of the mixed $(\mathrm{Yb}, \mathrm{K})$ position are also indicated.
turn determines their first coordination sphere, i.e. the shift and tilt of the MoO_{4} tetrahedra in order to form the bonds in the $M \mathrm{O}_{n}$ polyhedron (Fig. 5). Since the distribution of the K1 and Yb clusters is aperiodic along the modulation vector \mathbf{q}, the tilt and shift of MoO_{4} tetrahedra are modulated according to this distribution. The distances in the $M \mathrm{O}_{n}$ polyhedra (first coordination sphere) and in the M clusters (second coordination sphere) are correlated, thus leading to the modulation of the K2 atoms.

4. Conclusions

The second coordination sphere plays an important role in the formation of incommensurately modulated structures. This was predicted theoretically (Selke \& Fischer, 1979; Janssen \& Tjon, 1981; Bak, 1982; Parlinski \& Chapuis, 1993) and the present study of $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ is an additional example confirming this prediction. In the incommensurate structures of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{3} \mathrm{In}\left(\mathrm{PO}_{4}\right)_{2}$ (Chapuis \& Arakcheeva, 2004; Arakcheeva et al., 2003), and $\mathrm{K}_{13} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ (Dusek et al., 2002) the origin of the modulation was also directly associated with interactions in the second coordination sphere, whereas in the palmierite-like structure $\beta-\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$, these interactions affect the bonds between neighbouring atoms. The β $\mathrm{K}_{5} \mathrm{Yb}\left(\mathrm{MoO}_{4}\right)_{4}$ structure thus illustrates the complementary character of the interactions between the first and second coordination spheres. Moreover, this structure indicates that the third coordination sphere also plays an important role in the formation of modulated structures.

The contribution of the Swiss National Science foundation, grant No. 20-105325, is gratefully acknowledged. This work was also supported by the Grant Agency of the Czech Republic, grant 202/03/0430

References

Arakcheeva, A., Chapuis, G., Petricek, V., Dusek, M. \& Schönleber, A. (2003). Acta Cryst. B59, 17-27.

Bak, P. (1982). Rep. Prog. Phys. 45, 587-629.
Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-153.
Chapuis, G. \& Arakcheeva, A. (2004). Z. Kristallogr. 219, 730-736.
Dusek, M., Ludecke, J. \& van Smaalen, S. (2002). J. Mater. Chem. 12, 1408-1414.
Janssen, T. \& Tjon, J. A. (1981). Phys. Rev. B, 24, 2245-2248.
Morozov, V. A., Lazoryak, B. I., Lebedev, O. I., Amelinckx, S. \& Van Tendeloo, G. (2003). J. Solid State Chem. 176, 76-87.
Oxford Diffraction Ltd (2001). CrysAlis Software System. Version 1.166. Oxford Diffraction Ltd, UK.

Petricek, V., Dusek, M. \& Palatinus, L. (2000). JANA2000. Institute of Physics, Praha, Czech Republic.
Parlinski, K. \& Chapuis, G. (1993). Phys. Rev. B, 47, 13983-13991.
Schönleber, A., Meyer, M. \& Chapuis, G. (2001). J. Appl. Cryst. 34, 777-779.
Selke, W. \& Fischer, M. E. (1979). Phys. Rev. B, 20, 257-265.

[^0]: ${ }^{\mathbf{1}}$ Supplementary data for this paper, including the $\mathrm{Yb}, \mathrm{K} 1, \mathrm{~K} 2 a$ and $\mathrm{K} 2 b$ Fourier components of the positional amplitudes, amplitudes of the displacive modulation functions, amplitudes for the rotation and translation modulations of the (a) and $(b)\left[\mathrm{MoO}_{4}\right]$ rigid unit positions, displacement parameters and ADP modulation functions for all atoms, are available from the IUCr electronic archives (Reference: SN5021). Services for accessing these data are described at the back of the journal.

